
Theoretical Computational Speed-Up in SPARK, 11/17/2003 

 

Theoretical Computational Speed-Up in SPARK 
 

by Dimitri Curtil (SRG/LBNL) 
 

 
Typical measures of computational efficiency are: 

1. the number of function evaluations,  

2. the number of iterations required to solve the nonlinear system of equations, and 

3. the computational cost per iteration. 

It is important to keep in mind that the overall cost of solving the system of equations 
depends on the number of iterations required to achieve some prescribed precision in all 
the unknown variables. Since the solution sequence derived by SPARK in a strongly-
connected component is different than the one used by conventional solvers, the number 
of iterations until convergence might differ and therefore impact the overall 
computational cost. However, this discrepancy cannot be quantified theoretically as it 
depends inherently on the equation set being solved. Therefore, we cannot use the 
number of iterations as a fair comparative measure. 

To assess the theoretical computational speed-up obtained with the SPARK graph-
theoretical analysis we will derive the metrics 1 and 3 for a system of  equations and 
compare them with the same metrics typical of conventional solvers for a system of the 
same size.  
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Solving a System of Nonlinear Equations 
Solving a system of nonlinear equations with  equations and  unknowns consists in 
finding the root 

n n
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This problem is typically solved using the Newton method. At each iteration , the 
Newton method consists in solving the following linear system: 

k

 
( ) ( )

1

k
k

k

k k k

F x
kx F x

x
x x x+

∂
⋅∆ = − ∂

 = + ∆

 (1.2) 

 

1/5 



Theoretical Computational Speed-Up in SPARK, 11/17/2003 

Structure of a Strongly-connected Component in SPARK 
A strongly-connected component in SPARK is a subsystem of  nonlinear equations and 

 unknowns. Following the cut set reduction algorithm the n  unknowns are split 
between n  non-break unknowns  and  break unknowns v , whereby . 
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The subsystem of equations ( ) ( ),G u v u g u v= − ,
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 is ordered in such a way that it can be 
solved using forward substitution when the break variables v  are known. Here, the 
functions  represent the actual inverses matched with the non-break variables . ( ,g u v u
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Because of graph-theoretical derivation of the small cut set, only the  equations 
forming the vector  need to be solved simultaneously for the  break variables 
using an iterative solution method, e.g., the Newton method.  
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At each iteration k , the Newton method consists in solving the following linear system 
for the reduced system of equations : H
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Computational Cost per Iteration 
The computational cost of a Newton iteration, excluding function and derivative 
evaluation, is invariably determined by the linear algebra, [1]. The arithmetic cost of the 
factorization of a dense matrix of size n n×  is typically a small multiple of .3n 1  

Thus, the computational cost of a Newton iteration in a strongly-connected component is 
proportional to . 3

vn

                                                 
1 The arithmetic cost of the matrix factorization is proportional to for secant methods.  2n
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Number of Function Evaluations 
The number of function evaluations needed to compute the residual function used in the 
Newton iterations (1.2) and (1.5) is identical for the conventional solver and the SPARK 
solver. At each iteration it is:  u vn n n= +

The number of function evaluations needed to compute the finite differences to form the 
Jacobian matrix is  for the function  in (1.2) whereas it is  for the 
function  in (1.5). Depending on the strategy implemented in the actual nonlinear 
solver the Jacobian matrix might not be re-computed at each iteration.  

2n n n⋅ = F vn n⋅
H

Summary 

Speed-up in each strongly-connected component 
To estimate the computational speed-up achieved with the SPARK approach, we need to 
introduce the notion of the reduction ratio as the ratio of the number of break variables 
over the number of unknown variables: 

 vnr
n

=  (1.6) 

The reduction ratio is smaller or equal to 1. It is equal to 1 when the identified cut set is 
exactly the set of all unknowns. 

The theoretical speed-up is estimated as the ratio of the SPARK metric over the 
corresponding metric for a conventional solver. 

 
 Conventional solver SPARK solver Speed-up 
Computational cost per 
iteration ( )3nΟ  ( )3

vnΟ  ( )3rΟ  

Number of function 
evaluations to compute 
residuals 

n  n  1 

Number of function 
evaluations to compute 
finite-differences 

2n  vn n⋅  r  

 

At each iteration, the theoretical speed-up achieved by the SPARK solution technique is 
as high as Ο  in each strongly-connected component. This comparison is only true 
when using linear solution methods for dense matrices.  

( )3r

Impact of using sparse solution techniques 
When using sparse solution techniques, the speed-up factor will be less drastic as the 
computational cost per iteration becomes proportional to the number of non-zero entries 
raised to some exponent usually smaller than 3, typically ( )2nΟ .  
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To be fair, it is not straight-forward to derive a theoretical speed-up factor since the 
Jacobian matrix for the function  might intrinsically be less sparse than the one for the 
original function . However, when solving “large”

H
F  2 strongly-connected components, 

experience has shown that SPARK benefits drastically from using a sparse solution 
technique.3 The more equations there are in the component the less likely they are to all 
depend on all the unknown variables, therefore still producing a very sparse Jacobian 
matrix.4 Although the sparsity pattern in the Jacobian matrix for the SPARK approach is 
likely to be different than the one observed in the Jacobian matrix for the conventional 
solver, it is still significant enough when n  is big enough. v

Impact of the strong component decomposition 
The graph-theoretic analysis in SPARK also performs a strong component 
decomposition, whereby the original problem is further decomposed into smaller sub-
problems that are solved in sequential order. This can represent drastic further 
computational speed-up over the conventional approach that solves the entire set of 
equations at once.  

If SPARK identifies  strongly-connected components and N M  “explicit” components,5 
the speed-up  in the computational cost per iteration to solve the linear system is: ccpiK
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where 

ic  size of cut set (break variables) in strongly connected component i  

n  total number of unknown variables in problem (
1

N

i
i
c n

=

≤∑ ) 

This speed-up is only fully achieved if we further assume that the same number of 
iterations is required to solve each nonlinear problem in the strongly-connected 
components as it is in the full problem. 

A loose estimate ccpiK

maxc
 of the speed-up in Equation (1.7) can be derived using the size of 

the largest cut set : 
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2 With at least 100 break variables. 
3 The sparse solution technique implemented in the SPARK linear solver is based on the UMFPACK 
library (http://www.cise.ufl.edu/research/sparse/umfpack/). 
4 The Jacobian matrix for a function  with  is typically over 90% sparse! H 100vn >
5 An explicit component does not contain any break variables, therefore it can be solved by forward 
substitution. This means that the computational cost is exactly n  function evaluations. u
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Finally, the SPARK graph-theoretic approach also delivers a decrease in the number of 
function evaluations required to compute the finite-differences. This speed-up , 
although of lower order than the one achieved in the computational cost per iteration, can 
also be significant if the functions comprising the nonlinear problem are expensive to 
evaluate. 
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where 

ir  cut set reduction ratio achieved in the strongly connected component i  

in  number of unknown variables in the strongly connected component  i

n  total number of unknown variables in problem (
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